Distributed Estimation for Adaptive Networks Based on Serial-Inspired Diffusion
نویسندگان
چکیده
Distributed estimation and processing in networks modeled by graphs have received a great deal of interest recently, due to the benefits of decentralised processing in terms of performance and robustness to communications link failure between nodes of the network. Diffusion-based algorithms have been demonstrated to be among the most effective for distributed signal processing problems, through the combination of local node estimate updates and sharing of information with neighbour nodes through diffusion. In this work, we develop a serial-inspired approach based on message-passing strategies that provides a significant improvement in performance over prior art. The concept of serial processing in the graph has been successfully applied in sum-product based algorithms and here provides inspiration for an algorithm which makes use of the most up-to-date information in the graph in combination with the diffusion approach to offer improved performance.
منابع مشابه
Impacts of the Negative-exponential and the K-distribution modeled FSO turbulent links on the theoretical and simulated performance of the distributed diffusion networks
Merging the adaptive networks with the free space optical (FSO) communication technology is a very interesting field of research because by adding the benefits of this technology, the adaptive networks become more efficient, cheap and secure. This is due to the fact that FSO communication uses unregistered visible light bandwidth instead of the overused radio spectrum. However, in spite of all ...
متن کاملDistributed Incremental Least Mean-Square for Parameter Estimation using Heterogeneous Adaptive Networks in Unreliable Measurements
Adaptive networks include a set of nodes with adaptation and learning abilities for modeling various types of self-organized and complex activities encountered in the real world. This paper presents the effect of heterogeneously distributed incremental LMS algorithm with ideal links on the quality of unknown parameter estimation. In heterogeneous adaptive networks, a fraction of the nodes, defi...
متن کاملA Robust Distributed Estimation Algorithm under Alpha-Stable Noise Condition
Robust adaptive estimation of unknown parameter has been an important issue in recent years for reliable operation in the distributed networks. The conventional adaptive estimation algorithms that rely on mean square error (MSE) criterion exhibit good performance in the presence of Gaussian noise, but their performance drastically decreases under impulsive noise. In this paper, we propose a rob...
متن کاملTracking performance of incremental LMS algorithm over adaptive distributed sensor networks
in this paper we focus on the tracking performance of incremental adaptive LMS algorithm in an adaptive network. For this reason we consider the unknown weight vector to be a time varying sequence. First we analyze the performance of network in tracking a time varying weight vector and then we explain the estimation of Rayleigh fading channel through a random walk model. Closed form relations a...
متن کاملAdaptive Link Selection Strategies for Distributed Estimation in Wireless Sensor Networks
In this work, we propose adaptive link selection strategies for distributed estimation in diffusion-type wireless networks. We develop an exhaustive search-based link selection algorithm and a sparsity-inspired link selection algorithm that can exploit the topology of networks with poor-quality links. In the exhaustive searchbased algorithm, we choose the set of neighbors that results in the sm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1611.08951 شماره
صفحات -
تاریخ انتشار 2016